
SAFE: Self Attentive Function
Embedding for Binary Similarity

Luca Massarelli

Who am I?

PhD Student @ Sapienza
University of Rome

Exploring how to leverage
Artificial Intelligence to
improve security!

Reverse Engineering is painful…

Image Credit: G. A. Di Luna

Binary Similarity Problem

Applications

• Vulnerability Detection

• Library Function Identification

• Malware Hunting

Existing
Commercial
Solutions

IDA F.L.I.R.T.

DIAPHORA

Main Limitations

Not Scalable (BinDiff - Diaphora)

Require an extact copy of the function (IDA F.L.I.R.T. - YARA)

Analyst have to write rule (YARA)

A few word about
recompilation

Easy to
do!

Effective

How to create new efficient
and effective solutions?

EMBEDDINGS!!

Representation of words, sentences or
documents using vector!

IDEA BORROWED FROM
Natural Language Processing

𝐵𝐼𝑁𝐴𝑅𝑌 = 𝑣1 = [0.17 , 0. 19 ,… , 0.21]

𝐵𝐼𝑁𝐴𝑅𝐼𝐸𝑆 = 𝑣2 = [0.16 , 0. 23 ,… , 0.20]

𝑆𝐼𝑀 𝐵𝐼𝑁𝐴𝑅𝑌, 𝐵𝐼𝑁𝐴𝑅𝐼𝐸𝑆 = < 𝑣1, 𝑣2 > = 0.9

Word2Vec Model • The embedding of each word is computed with an unsupervised
algorithm that consider the context in od the word.

Word2Vec Model

• Words relationship can be retrieved from the embeddings:

𝑚𝑎𝑛 ∶ 𝑤𝑜𝑚𝑒𝑛 = 𝑘𝑖𝑛𝑔 ∶ ? ? ?

𝑣2𝑤 𝑚𝑎𝑛 − 𝑣2𝑤 𝑘𝑖𝑛𝑔 + 𝑣2𝑤 𝑤𝑜𝑚𝑒𝑛 = 𝑤2𝑣(𝑞𝑢𝑒𝑒𝑛)

Word2Vec Model For ASM

We can do the same with assembly code!

𝑝𝑢𝑠ℎ 𝑟𝑏𝑝 ∶ 𝑝𝑜𝑝 𝑟𝑏𝑝 = 𝑝𝑢𝑠ℎ 𝑟𝑎𝑥 ∶ ? ? ?

pop rax

How we aggregate
instruction embeddings to
function embeddings?

Structured Self Attentive Model

The Full Pipeline

Creating the dataset

• This is easy!!!

• We compile 11 different
projects with different
compilers and optimization!

• … and we disassemble
everithing!

It works!!

• AUC:

• SAFE: 0.99

• I2v_attention: 0.96

• Gemini (MFE): 0.95

• We tested SAFE on different
task!

Function Search Engine!

• We tested SAFE as a function search
engine!

• We try to retrieve from a knowledge
base similar function to the query!

Semantic
Classification

• We try to classify functions
to 4 different semantic
classes using embeddings!

• Math

• String

• Encryption

• Sorting

Semantic
Classification
Visualization
Embeddings are clustered in
the space according to their
semantic!

(S) Sorting

(E) Encryption

(SM) String Manipulation

(M) Math

Fig. 7. 2-dimensional visualization of the embedding vectors for all binary functions in Semantic Dataset. The four different categories of algorithms
(Encryption, Sorting, Math and String Manipulation) are represented with different symbols and colors.

window malwares found in famous malware repositories: the

TeslaCrypt and Vipasana ransomwares. We disassembled the

malwares with radare2, we included in the caller the code of

the callee functions up to depth 2. We processed the disas-

sembled functions with our classifier, and we selected only

the functions that are flagged as encryption with a probability

score greater than 96%. Finally, we manually analyzed the

malwaresamples to assess thequality of the selected functions.

• TeslaCrypt 15: on a total of 658 functions, the classifier

flags the ones at addresses 0x41e900, 0x420ec0,

0x4210a0, 0x4212c0, 0x421665, 0x421900,

0x4219c0. We confirmed that these are either encryption

(or decryption) functions or helper functions directly

called by the main encryption procedures.

• Vipasana 16: on a total of 1254 functions, the classi-

fier flags the ones at addresses 0x406da0, 0x414a58,

0x415240. We confirmed that two of these are either

encryption (or decryption) functions or helper functions

directly called by the main encryption procedures. The

false positive is 0x406da0.

As final remark, we want to stress that these malwares are

for windows and they are 32-bit binaries, while we trained our

15The sample is available at url https://github.com/ytisf/theZoo/tree/master/
malwares/Binaries/Ransomware.TeslaCrypt. The variant analyzed is the one
with hash 3372c1eda...

16The sample is available at url https://github.com/ytisf/theZoo/tree/master/
malwares/Binaries/Ransomware.Vipasana. The variant analyzed is the one
with hash 0442cfabb...4b6ab

entire system on ELF executables for AMD64. This shows that

our model is able to generate good embeddings also for cases

that are largely different from the ones seen during training.

VII . SPEED CONSIDERATIONS.

As reported in the introduction, one of the advantages of

SAFE that it ditches the use of CFGs. From our tests on

radare2 disassembling a function is 10 times faster than com-

puting its CFG. Once functions are disassembled an Nvidia

K80 running our model computes the embeddings of 1000

functions in around 1 second.

More precisely, we run our tests on a virtual machine hosted

on Google cloud platform. The machine has 8 core Intel Sandy

Bridge, 30gb of ram, an Nvidia K80 and SSD hard-drive.

We disassembled all object files in postegres 9.6 compiled

with gcc-6 for all optimizations. During the disassembling we

assume to know the starting address of a function, see [26] for

a paper using neural networks to find functions in a binary.

The time needed to disassemble and pre-process 3432

binaries is 235 seconds, the time needed to compute the

embeddings of the resulting 32592 functions is 33.3 seconds.

The end-to-end time to compute embeddings for all functions

in postgres starting from binary files is less than 5 minutes. We

repeated the same test with openssl 1.1.1 compiled with gcc-

5 for all optimizations. The end-to-end time to compute the

embeddings for all functions in openssl is less than 4 minutes.

Gemini is up to 10 times slower, it needs 43 minutes for

postgres and 26 minutes for openssl.

11

Applications

IDENTIFICATION OF AN
ENCRYPTION FUNCTION

INSIDE A MALWARE!

IDENTIFICATION OF A
VULNERABLE FUNCTIONS

INSIDE A FIRMWARE!

YARASAFE – USING SAFE
INSIDE YARA

TeslaCrypt Ransomware

• We disassemble the sample with IDA and we used our
semantic classifier to analyze every function!

• The Classifier founds seven functions that has
encryption semantic!

• 6 of them were effectively performing encryption!!

Sample:3372c1edab46837f1e973164fa2d726c5c5e17bcb888828ccd7c4dfcc234a370

Detected Functions: 0x41e900, 0x420ec0, 0x4210a0,0x4212c0, 0x421665,0x421900, 0x4219c0

Function Detected At 0x41E900

SHA1 Constant

Possible improvent: Detecting Suspicious functionality inside a
firmware

Spotting Vulnerability in COTS
software

• We develop a tool: YARASAFE, to
simplify this process!

YARA-SAFE

YARA-SAFE Rule

import "safe"

rule Heartbleed

{

condition:

safe.similarity("[0.094, …. , 0.0597]") > 0.97

}

Rule - Creation

DEMO!!

Github Paper

